skip to main content


Search for: All records

Creators/Authors contains: "Yao, Wentao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract Direct formation of ultra-small nanoparticles on carbon supports by rapid high temperature synthesis method offers new opportunities for scalable nanomanufacturing and the synthesis of stable multi-elemental nanoparticles. However, the underlying mechanisms affecting the dispersion and stability of nanoparticles on the supports during high temperature processing remain enigmatic. In this work, we report the observation of metallic nanoparticles formation and stabilization on carbon supports through in situ Joule heating method. We find that the formation of metallic nanoparticles is associated with the simultaneous phase transition of amorphous carbon to a highly defective turbostratic graphite (T-graphite). Molecular dynamic (MD) simulations suggest that the defective T-graphite provide numerous nucleation sites for the nanoparticles to form. Furthermore, the nanoparticles partially intercalate and take root on edge planes, leading to high binding energy on support. This interaction between nanoparticles and T-graphite substrate strengthens the anchoring and provides excellent thermal stability to the nanoparticles. These findings provide mechanistic understanding of rapid high temperature synthesis of metal nanoparticles on carbon supports and the origin of their stability. 
    more » « less
  3. Highly flexible multi-layered hydroxyapatite (HA) nanobelts were successfully grown and compared to nanorods. The nanomechanical behaviour of individual HA nanostructures was visualized using in situ TEM. Compression-induced deformation in HA nanobelts can spontaneously recover at a maximal strain of 99.2%, much larger than the 2.63% failure strain observed for traditional HA nanorods. 
    more » « less
  4.  
    more » « less
  5. Abstract

    While 3D printing of rechargeable batteries has received immense interest in advancing the next generation of 3D energy storage devices, challenges with the 3D printing of electrolytes still remain. Additional processing steps such as solvent evaporation were required for earlier studies of electrolyte fabrication, which hindered the simultaneous production of electrode and electrolyte in an all‐3D‐printed battery. Here, a novel method is demonstrated to fabricate hybrid solid‐state electrolytes using an elevated‐temperature direct ink writing technique without any additional processing steps. The hybrid solid‐state electrolyte consists of solid poly(vinylidene fluoride‐hexafluoropropylene) matrices and a Li+‐conducting ionic‐liquid electrolyte. The ink is modified by adding nanosized ceramic fillers to achieve the desired rheological properties. The ionic conductivity of the inks is 0.78  × 10−3S cm−1. Interestingly, a continuous, thin, and dense layer is discovered to form between the porous electrolyte layer and the electrode, which effectively reduces the interfacial resistance of the solid‐state battery. Compared to the traditional methods of solid‐state battery assembly, the directly printed electrolyte helps to achieve higher capacities and a better rate performance. The direct fabrication of electrolyte from printable inks at an elevated temperature will shed new light on the design of all‐3D‐printed batteries for next‐generation electronic devices.

     
    more » « less